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SUMMARY

From November 1995 to March 1997 a total of nine broadband temporary stations were de-
ployed across the Saudi Arabian shield. These stations consisted of STS-2 seismometers re-
corded continuously at 40 sps on REFTEK dataloggers. All installations were at bedrock sites.
The results from our field deployment of nine portable broadband stations suggest that sites in
the Arabian shield are extremely quiet. Using data sections selected randomly during the de-
ployment, noise studies showed that most stations were exceptionally quiet with noise levels
near the USGS Peterson (1993) low noise model for frequencies higher than 0.1 Hz. At lower
frequencies, the horizontal coniponents showed increased noise levels, possibly due to instru-
mental characteristics. High-frequency ( > 1 Hz) noise varied as much as 10 dB between day
and night for some stations (RAYN, TAIF) while more isolated stations (HALM) were con-
stant. Seasonal noise levels also varied, with April to June being the quietest months. Slight
changes in peak microseism frequency also occurred seasonally. The quietest stations were
HALM, RAYN, AFIF and UQSK, all of which were located in central Saudi Arabia and showed
noise levels near the low noise model for frequencies between 0.1 and 4 HZ. The optimal site
for a new station would be near HALM as it was both quiet and showed very little diurnal

variation due to cultural noise.

The low noise at these stations also contributes to the very low detection threshold of events
with mb = 3.5 at distances from 10 to 100 degrees. These stations appear to be among the best
sites in the world for the properties of detection thresholds and ground noise levels. Seismo-
grams from sources 10 degrees from the center of the network have unique characteristics
which can be used to identify the source regions. Zagros events have a clear Pn and Sn arrivals
with an observable Lg. Shallow events from the Arabian Sea have clear P, S, and surface waves
but no discernible Lg phases. From the opposite direction, aftershocks from the Gulf of Aqaba
have very weak P and S waves with very strong Lg phases.

Keywords: Saudi Arabia, detection thresholds, ground noise, seismic regionalization

OBJECTIVES

This project consisted of a field program in the Kingdom of Saudi Arabia to collect broadband
seismic waveform data and the associated parametric data describing the sources. We deployed
nine portable broadband seismic stations on the Arabian Shield which recorded over a period of
one year and three months. Most of the regional seismic sources are in the tectonically active
areas of Iran and Turkey. Other areas of seismic activity include the Red Sea Rift bordering the




Shield to the southwest, the Dead Sea Transform fault zone to the north, and the Arabian Sea to

the southeast.
The main research objectives of this program were:

1. to observe the propagation of regional phases across the Arabian Shield over a broad
band of frequencies,

2. “to study the seismicity recorded on the Arabian Shield,

3. to characterize potential sites for permanent seismic facility installation
RESEARCH ACCOMPLISHED

The first deployment in late 1995 consisted of six seismographs arranged in two linear arrays
(Figure 1). One linear array consisted of the stations RAYN, HALM, RANI. This profile’s long
axis is pointed in the direction of high seismicity in the Zagros. These earthquakes are occur-
ring in the Arabian Plate where it is colliding with Persian Plate (Jackson and Fitch, 1981).
Seismic wave ray paths along this profile from Zagros events should therefore have entirely
intra-plate paths. Stations were between 900 and 1500 km from the nearest Zagros sources.
The second linear array consisted of the stations AFIF, RANI, BISH, SODA. Events in the
highly active area of the Afar triple junction in Africa and events in the Caucasus are also
generally aligned with this four station array.

Early in the experiment the station BISH was vandalized and the station was closed. Three new
stations were installed in June 1996 at TAIF, UQSK, and RIYD. These stations provide a more
areal distribution than the initial deployment. The station at RAYN was converted from a
portable station to a permanent GSN station in June 1996.

The array deployments allowed sampling of regional wave characteristics over a broad area,
from very numerous source regions. Ray paths traversing virtually every area of the shield
were recorded, as a result of the high seismicity rates characteristic of most of the active areas
around the shield.

Instrumentation

Each station was equipped with a Streckeisen STS-2 broadband seismometer which has a pass

band between 0.008 Hz and 50 Hz. Each seismometer was heavily insulated to protect it from
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the diurnal changes in temperature. The sensors were attached to bedrock outcrops whenever

possible.

The output of the STS-2 was recorded at a sample rate of 40 sps by a 24-bit REFTEK RT72A-
08 datalogger. At the station the data were stored on a 2 Gbyte SCSI disk. To take advantage of
the copious amounts of sunshine available in Saudi Arabia, we used solar panels to charge car
batteries. Timing to the station was provided by a local GPS clock. Data were retrieved by
exchanging disks at each site during service runs. Each site was visited every four to six weeks.

Station Descriptions

Station Latitude Longitude Elgvation (Km) Location

AFIF 239310  43.0400 1.1160 Afif, Saudi Arabia

BISH 19.9228  42.6901 1.3790 Bisha, Saudi Arabia

HALM 228454 44.3173 0.9300 Hadabat Al-Mabhri, Saudi Arabia
RANI  21.3116 42.7761 1.0010 Raniyah, Saudi Arabia

RAYN  23.5220 45.5008 - 0.7920 Ar-Rayn, Saudi Arabia

RIYD 247220  46.6430 0.7170 Riyadh, Saudi Arabia

SODA  18.2921  42.3769 2.8760 Al-Soda, Saudi Arabia

TAIF 21.2810  40.3490 2.0500 | Taif, Saudi Arabia

UQSK  25.7890  42.3600 0.9500 Al-Soda, Saudi Arabia

Table 1. Station codes, coordinates, and names for the sites used in the Saudi Arabian broad-
band deployment.

AFIF - The station was on a low ridge of crystalline rock about 10 km from the town of AFIF
and a few km from the nearest paved road. The vault was in a rectangular hole lined .
with cinder blocks. The top of the vault consists of a metal plate exposed to the sun.
Solar panels were mounted on a steel pole set in concrete 3 meters from the vault.




BISH - Station was located under a large granite boulder at the edge of an outcrop in a well-
built vault. The solar panel was mounted on a pole a few meters away. '

HALM - Located in a well-built vault on a granite outcrop in a very isolated location. The
nearest town was at least 50 km away, and the only other possible source of cultural
noise was Bedouin encampments and shepherds in pickup trucks. Again, the vault was

under a granite ledge. Solar panels were mounted on 2 steel pole set in concrete 3 meters

from the vault.

RANI - Station was under a granite ledge about 3 km from a fairly heavily traveled paved road
(one vehicle every few minutes during the day) in a well-built vault. Solar panels were
mounted on a steel pole set in concrete 3 meters from the vault. There appears to have
been some sort of earth-moving equipment visible (and audible) in the distance to the

west about 10 km away (possible quarry ?).

RAYN - Located on a granite outcrop a few km from the town of Rayn. The vault was well-
built, and under a overhanging ledge of granite. The site of the permanent IRIS/IDA
station RAYN is approximately 200 m to the east. Solar panels were mounted on a steel

pole set in concrete 3 meters from the vault.

RIYD - Station was on a pier in a large vault in the midst of the city of Riyadh. Basement rock

was probably limestone.

SODA - Station was on the top of a mountain on metamorphosed sediments. The vault was in a
Jarge, cinder block lined hole covered by wooden boards. The KSU station SODA was
also at this site. Solar panel was mounted low to the ground, 4 meters. The nearest paved
road was about 5 km away. Some trees and bushes were nearby.

TAIF - Station was on the top of a mountain next to the city of Taif. The vault was a hole dug
into the ground lined with cinder block, co-located with KSU station TAIF. Due to lack

of space, the disk was placed on the seismometer mini-vault.

UQSK - Station was located on low granite outcrop, co-located with KSU station UQSK. The

vault was placed in a hole lined with concrete.



Data Processing

The processing scheme required several steps: raw data retrieval followed by formatting, qual-
ity control, and event association. A Sun Sparc field computer was set up in Riyadh. The data
conversion to CSS 3.0 format and quality control were performed on this field computer. The |
data were then sent to UCSD where an automatic picking program was used to identify all
arrivals. These arrivals were reviewed by an analyst. The initial event associations were based
on predicted arrivals from a REB origin table using the IASPEI91 travel time tables and the
actual phase picks. Any recorded events not appearing in the REB catalog were located using
arrivals from the Saudi portable stations. The data were sectioned into an event-oriented CSS
3.0 waveform database and have been distributed to interested users. A complete copy of all
data is available through IRIS Data Management Center in Seattle, Washington.

Operating at 40 samples/second continuously, each station collected 41.5 Mbytes of waveform
data per day. A total of 2300 station-days of data were recorded.

Instrument Problems

BISH Station vandalized between November 1995 and March 1996, shortly after installa-
tion.

HALM  Seismometer problem - no long-period response from day 350 1995 to day 062
1996.

RANI Leveling problems, seismometer changed day 063 1996. Intermittent cable prob-

lems due to rodents.

RIYD Seismometer/DAS connection problem from day 069 1996 to day 156 1996 - no
data. High-frequency intermittent noise (due to disk spin-up) - all data. Possible
problem with seismometer gain on vertical component - see noise results above.

SODA Loose vault (due to water softening plaster) caused leveling problems. Large off-
sets on data. Seismometer changed day 164 1996, host-box changed day 165 1996.

TAIF High-frequency intermittent noise (due to disk spin-up) - all data.




" Data Results

Data processing has been completed for all data recorded. A total of 1930 events have been
processed and are shown in Figures 2(a), (b), (c). The epicenter map in Figure 2(a) shows the
338 events within 20° of the stations. The map in Figure 2(b) shows the 1528 recorded events
within 90° of Saudi Arabia while Figure 2(c) shows the complete event catalog of 1930 events.

Most of the events within 20° of our stations are located in the Zagros region with almost all the
remaining events concentrated as aftershocks to the 23 November 1995 Gulf of Agqaba earth-
quake or from the Arabian and Red Seas. Each of these four source regions were approxi-
mately 10° from the center of the network and had unique seismic characteristics as shown in
Figure 1. Events from Iran had clear Pn and Sn arrivals with an observable Lg. Shallow events
from the Arabian Sea had clear P, S, and surface waves but no Lg. From the opposite direction, '
aftershocks from the Gulf of Agaba had very weak P and S waves with very strong Lg phases.
Finally, from the Red Sea, all phases are difficult to distinguish since they were very emergent.
P phases were the most distinctive, followed by weak to non-existent S phases followed by

emergent Lg waveforms.




Figure 2(a). Epicenters of all earthquakes within 20 degrees of the station HALM recorded
on the Saudi broadband stations.

no reported mb
mb = 3.0
mb =4.0
mb = 5.0
mb = 6.0




® no reported mb @ depth=33

* mb=3.0 u  depth <=50

® mb=4.0 50 < depth <= 100
B mb=50 O 100 < depth <= 200
M mb=6.0 ®m 200 <depth

Figure 2(b). Epicenters of all earthquakes within 90 degrees of the station HALM recorded
on the Saudi broadband stations.




® no reported mb depth = 33

= mb=3.0 ®  depth <=50

¥ mb=40 50 < depth <=100
B mb=50 0 100 < depth <= 200
Bl mb=60 m 200 < depth

Figure 2(c). Epicenters of all earthquakes within 160 degrees of the station HALM recorded
on the Saudi broadband stations.
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Ground Noise Characteristics

One of the most important seismic characterizations for each site is an estimate of its ground
noise properties. The ambient noise spectra over a variety of conditions provides an estimate of
the theoretical performance relative to other sites and to accepted noise models. This informa-
tion is useful in identifying specific sites for future deployments, in calibrating detection thresh-

olds, and in identifying instrumental problems.

We followed the approach of Astiz (1997) to estimate power spectra. Single days of continuous
data were selected pseudo-randomly from the complete recorded dataset. From each sampled
day, 15-minute data segments were further randomly selected. Random sampling was used to
ensure that periodic effects due to instruments (for example, hourly GPS locks or disk access)
do not bias the data strongly. Data segments which fell 3 hours after large global earthquakes
(above magnitude 5.5 in the Harvard CMT catalog) were rejected to avoid contamination of the
long period data. Power spectral estimates were then calculated over windows with a length of
32,768 samples (819.2 seconds). This window length was chosen to eliminate excessive bias-
ing of the lowest frequencies (about 0.008 Hz for the STS-2) due to the tapering. A 4 pi prolate |
taper was applied to the data, and it was then transformed using an FFT. Windows 32,768 points
long were selected from the dataset, and the robust power spectra was calculated using the
weighted median estimate of Chave et al. (1987). This robust estimate ensures that isolated
outliers do not adversely affect the resulting spectral estimate. The spectra were then averaged
over bins of 4 frequencies and converted to acceleration spectra. Because the STS-2 has essen-
tially flat response over the chosen frequency range, instrument response was not removed. The
roll-off at 16 Hz of the anti-alias FIR filters on the digitizer remains however.

A feature of this approach is that the data are not examined by eye prior to the power spectral
estimate, so the resulting estimate reliably estimates the noise levels at that station, rather than
providing the quietest possible estimate. Small local and regional earthquakes will be included
in the estimate; however, the long windows and robust estimate will minimize their effect.

The following plots show noise levels by station and channel, and follow the format of Astiz
(1997). The lower axis shows period (seconds) while the upper axis shows frequency (Hz). The -
left axis is in decibels with respect to acceleration m?%s*/Hz. The black curve shows the vertical
(BHZ), the red shows the east-west (BHE), and the blue marks the north-south (BHN). The
dashed line denote the USGS low- and high-noise models (e.g. Peterson, 1993). Plots showing.
diurnal and seasonal changes are appropriately marked. Because the deployment was of limited

11




duration, some stations did not record enough data to provide seasonal changes.

Some data which had known station and instrument problems were not used. This includes
HALM data up to day 062 of 1996, which had a much reduced low frequency response. IDA
RAYN data were also not included in this study, as the vault, instrument, and digitizer are
different.

Figure 3 shows the noise levels for all stations for each channel (BHZ, BHN and BHE). In

general, the stations were very quiet. The vertical components in particular lie very near the

USGS low noise model except at higher (above 2 Hz) frequencies. This noise was generally
due to cultural causes. It is clear that the horizontals were significantly noisier at frequencies
less than 0.1 Hz. Not all stations had equal number of data points so some caution should be
taken when comparing individual stations. The systematics of this noise study differs from that
used to determine the USGS low- and high-noise models and consequently absolute power
levels may differ slightly due to bias induced by different tapers and windows.

Figures 4(a) and 4(b) show the noise levels at each station. The number of observations at each
station are shown in the upper left corner. HALM, RAYN, AFIF and UQSK are the quietest
stations. RIYD, TAIF and SODA show enhanced high frequency noise which is expected as all
are relatively close to large cities. In general, noise levels were similar for all channels for a
given station for frequencies greater than 0.9 Hz. Between 0.9 Hz and roughly 0.1 Hz, the
vertical was slightly noisier than the horizontals, and at frequencies less than 0.1 Hz, the hori-
zontals were much noisier. This pattern is true of all stations except RIYD, which shows a
lower noise on the vertical at almost all frequencies. The most likely explanation was an instru-

mental problem.

Figures 5(a) through 5(h) show diurnal and seasonal variations at the stations, as constrained by
the available data. In general, noise levels were quietest at night and noisiest during morning
and early afternoon, as expected for cultural noise. The most significant variations occurred at

frequencies above 1 Hz.
Long period noise

The most obvious discrepancy between the noise levels from the Saudi stations and the low
noise model is at the horizontal long periods. At frequencies greater than 0.1 Hz (10 second
period), the noise levels between the verticals and the horizontals varied greatly (by up to 40
dB). Examination of the data showed that longer period noise is clearly present in the data. This

12




presents a problem for studies using longer period data such as surface wave studies and re-
gional moment tensor inversions, which are forced to depend solely on vertical data for moder-

ate sized events.

The source of the noise is not clear. The long period noise often anti-correlates on the two
horizoatal channels (Figure 6(a)) and consequently a simple rotation will eliminate the noise on
one channel at least (Figure 6(b)). The direction of rotation can be determined by polarization
analysis or by a simple arctan (x/y), if it is assumed the motion is linear. The 57 degree angle for
UQSK suggests that the long period noise may be due to a single component on the STS-2
seismometer. The components on an STS-2 are 120 degrees from each other with one compo-
nent pointing south. Therefore, the 57 degree vector is within 3 degrees of one component,
which is within the range of error of measurement or possible misalignment of the seismom-

eter.

An alternate possibility is that the long period noise may be due to small tilts which affect the

horizontal more than the verticals.
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Figure 3. Noise levels at all stations.
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Figure 5(a). Diurnal and seasonal noise variations for station AFIF.

17




Frequency (Hz) Frequency (Hz)
101 10° 101 102 101 10° ‘IO1 102
-120 i 4120
HALM BHN at‘:c _ HALM BHN ac‘:c

PSE (10xlog (m?/s*)/Hz) db

-180 —— 3-9local \ B -180 Jan.-Mar. \ =
—— 9-15 |ocal ~ _ ~— Apr.-June ~ _
- 15-21 local July-Sept.
— 21-3 local Oc -Dec.
'200 AR | LML AL LR | LRI '200 AR R L] | L LA »
101 100 101 102 101 10° 101 102
107 1o° 1o1 102 10 100 101 102
-120 -p— -120 = :
HALM BHE ac\:c _ HALM BHE aéc

-140 - - =

PSE (10xlog (m?/s%)/Hz) db

-160 y -
\
-180 - ——— 3-9local \ B -180 Jan.-Mar. \ -
— g-15 local ~ _ ———— Apr.-June ~ _
— 15-21 local July-Sept.
—— 21-3 local Oct.-Dec.
200 - T -200 B AL R R L B AL
101 100 101 102 1071 100 101 102
101 10° 101 102 101 10° 10‘ 102
% -120 —jrsl—— et P .
) HALM BHZ aéc HALM BHZ aéc
= - -
N - - - - W ’ =
;c: -140 140 4, ‘ %
& ; »
E 160 - L -160 - :
%0
)
§ -180 - —— 3-9local = -180 Jan.-Mar. —
- —— 9-15 local < ——— Apr.-June ~ -
o - 15.21 local July-Sept.
n —— 21-3 local Oct.-Dec.
n.( ’200 b ] LR ELELARL] | LA ) LA ELILA L '200 MR R} LA LR
101 10° 101 102 101 100 1 01 102 -
Period (sec) Period (sec)

Figure 5(b). Diurnal and seasonal noise variations for station HALM.
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Figure 5(c). Diurnal and seasonal noise variations for station RANI.
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Figure 5(d). Diurnal and seasonal noise variations for station RAYN.
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Figure 5(e). Diurnal and seasonal noise variations for station RIYD.
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Figure 5(f). Diurnal and seasonal noise variations for station SODA..
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Figure 5(g). Diurnal and seasonal noise variations for station TAIF.
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Figure 5(h). Diurnal and seasonal noise variations for station UQSK.
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Figure 6(a). UQSK horizontal channels showing anti-correlated long-period noise.
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Figure 6(b). UQSK horizontal channels rotated 57 degrees to isolate the noise.
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Detection Thresholds

Following the method of Harvey and Hansen (1994) we calculated for each station the single-
site magnitude detection thresholds. Using event m, magnitudes reported in the REB, the m,
estimates from our data in the 0.8 to 3 Hz pass band were corrected to produce zero mean
statistics for the REB relative residuals. Single-site m, vs. distance functions gave us the raw
information for determining single-site detection magnitude thresholds. In a traditional analy-
sis of single-site detection magnitude thresholds, one would create a map view, put events into
regional bins, compute magnitude-frequency functions for each bin and set the magnitude thresh-
old for each bin according to some roll-off criteria applied to the magnitude-frequency func-
tions. However, this method requires more events than we had in our catalog.

There is an alternate method for determining single-site detection magnitude thresholds which
yields reasonable results from relatively small catalogs. This method was based on using P
wave signal-to-noise ratios observed at a given station to scale event magnitudes to equivalent
threshold values for that station. This was done by adjusting the event magnitude by an amount
equal to the logarithm of the ratio of the observed signal-to-noise level and a threshold signal-
 to-noise level representing the minimum level at which a signal would be detected. The as-
sumption here was. that the wave propagation is a linear process so that amplitudes can be
scaled directly. This approach allowed us to scale down large magnitude events to equivalent
smaller events that are at the detection limit for each particular source-receiver geometry.

The results of this method were applied to the events shown in Figures 7(a)-(f) for a specified
detection threshold signal-to-noise level of two. Figure 7(e) shows such a function produced
from events for the newly installed GSN station RAYN where squares represent events that
were in the REB and the symbols are color coded according to event depth. We can see that the
populations of shallow and deep events clearly separate as one would expect. Our results show
that the mb detection threshold for the distance range of 10-100 degrees is about mb = 3.5.
Stations AFIF (Figure 7(a)) and HALM (Figure 7(c)), UQSK (Figure 7(i)) have nearly equiva- |
lent detection thresholds as the RAYN étation. The western stations SODA, RANI and TAIF
are less sensitive, with detection thresholds of about mb = 3.7.
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CONCLUSIONS AND RECOMMENDATIONS

The results of our field deployment suggest that many of our sites in the Arabian shield are
extremely quiet with ground noise near or equal to the low noise model in the frequency band
from 1-10 Hz. The low noise also contributes to the very low detection threshold of events with
mb >= 3.5 at distances from 10 to 100 degrees. These stations appear to be among the best sites
in the world for the properties of detection thresholds and ground noise levels. Seismograms
from sources 10 degrees from the center of the network have very unique characteristics which
can be used to identify the source regions. Zagros events have a clear Pn and Sn arrivals with
an observable Lg. Shallow events from the Arabian Sea have clear P, S, and surface waves but
no discernible Lg phases. From the opposite direction, aftershocks from the Gulf of Aqaba
have very weak P and S waves with very strong Lg phases.

In the future, the understanding of the waveform propagation properties would be enhanced by
placing stations further north in the Arabian shield areas. Based on our observations, there exist
several excellent sites in the shield region of Saudi Arabia which could be used for potential

seismic arrays.
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